博客
关于我
取整函数的极限问题
阅读量:478 次
发布时间:2019-03-06

本文共 1919 字,大约阅读时间需要 6 分钟。

  1. I = lim ⁡ x → 0 x [ 10 x ] I=\lim \limits_{x \rightarrow 0}x\left[\frac{10}{x}\right] I=x0limx[x10],其中 [ ] [] []为取整符号

解析:根据 x − 1 < [ x ] ⩽ x x-1<[x] \leqslant x x1<[x]x,有

10 x − 1 < [ 10 x ] ⩽ 10 x \frac{10}{x}-1<\left[\frac{10}{x}\right] \leqslant \frac{10}{x} x101<[x10]x10
于是
{ x > 0 ⇒ 10 − x < x ⋅ [ 10 x ] ⩽ 10 x < 0 ⇒ 10 − x > x ⋅ [ 10 x ] ⩾ 10 \left\{\begin{array}{l} {x>0 \Rightarrow 10-x<x \cdot\left[\frac{10}{x}\right] \leqslant 10} \\ {x<0 \Rightarrow 10-x>x \cdot\left[\frac{10}{x}\right] \geqslant 10} \end{array}\right. {
x>010x<x[x10]10x<010x>x[x10]10
故可得 I = lim ⁡ x → 0 [ 10 x ] = 10 I=\lim \limits_{x \rightarrow 0}\left[\frac{10}{x}\right]=10 I=x0lim[x10]=10

  1. x = 1 n ( n = 2 , 3 , ⋯   ) x=\frac{1}{n}(n=2,3, \cdots) x=n1(n=2,3,)是函数 f ( x ) = x ⋅ [ 1 x ] f(x)=x \cdot\left[\frac{1}{x}\right] f(x)=x[x1]的().
    A.无穷间断点
    B.跳跃间断点
    C.可去间断点
    D.连续间断点

解析:当 x → ( 1 n ) − x \rightarrow\left(\frac{1}{n}\right)^{-} x(n1),有:

1 n + 1 < x < 1 n , n < 1 x < n + 1 \frac{1}{n+1}<x<\frac{1}{n}, \quad n<\frac{1}{x}<n+1 n+11<x<n1,n<x1<n+1
[ 1 n ] = n [\frac{1}{n}]=n [n1]=n,所以
lim ⁡ x → ( 1 n ) − f ( x ) = lim ⁡ x → ( 1 n ) x ⋅ [ 1 x ] = 1 \lim _{x \rightarrow\left(\frac{1}{n}\right)^{-}} f(x)=\lim _{x \rightarrow\left(\frac{1}{n}\right)} x \cdot\left[\frac{1}{x}\right]=1 x(n1)limf(x)=x(n1)limx[x1]=1
x → ( 1 n ) + x \rightarrow\left(\frac{1}{n}\right)^{+} x(n1)+,有 1 n < x < 1 n − 1 , n − 1 < 1 x < n \frac{1}{n}<x<\frac{1}{n-1}, n-1<\frac{1}{x}<n n1<x<n11,n1<x1<n,故 [ 1 n ] = n − 1 [\frac{1}{n}]=n-1 [n1]=n1,所以
lim ⁡ x → ( 1 n ) + f ( x ) = lim ⁡ x → ( 1 n ) + x ⋅ [ 1 x ] = n − 1 n < 1 \lim _{x \rightarrow\left(\frac{1}{n}\right)^{+}} f(x)=\lim _{x \rightarrow\left(\frac{1}{n}\right)^{+}} x \cdot\left[\frac{1}{x}\right]=\frac{n-1}{n}<1 x(n1)+limf(x)=x(n1)+limx[x1]=nn1<1
x = 1 n ( n = 2 , 3 , ⋯   ) x=\frac{1}{n}(n=2,3, \cdots) x=n1(n=2,3,) f ( x ) f(x) f(x)的跳跃间断点,所以B正确。

转载地址:http://ivndz.baihongyu.com/

你可能感兴趣的文章
multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
查看>>
mysql csv import meets charset
查看>>
multivariate_normal TypeError: ufunc ‘add‘ output (typecode ‘O‘) could not be coerced to provided……
查看>>
MySQL DBA 数据库优化策略
查看>>
multi_index_container
查看>>
mutiplemap 总结
查看>>
MySQL Error Handling in Stored Procedures---转载
查看>>
MVC 区域功能
查看>>
MySQL FEDERATED 提示
查看>>
mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
查看>>
Mysql group by
查看>>
MySQL I 有福啦,窗口函数大大提高了取数的效率!
查看>>
mysql id自动增长 初始值 Mysql重置auto_increment初始值
查看>>
MySQL in 太多过慢的 3 种解决方案
查看>>
Mysql Innodb 锁机制
查看>>
MySQL InnoDB中意向锁的作用及原理探
查看>>
MySQL InnoDB事务隔离级别与锁机制深入解析
查看>>
Mysql InnoDB存储引擎 —— 数据页
查看>>
Mysql InnoDB存储引擎中的checkpoint技术
查看>>
Mysql InnoDB存储引擎中缓冲池Buffer Pool、Redo Log、Bin Log、Undo Log、Channge Buffer
查看>>